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ABSTRACT

Effective pretraining of large language models (LLMs) relies significantly on
the strategic composition of training data from various sources. Traditional
domain weighting approaches often focus on minimizing either average empirical
loss or worst-case domain loss, which can lead to overfitting to either simple
or complex domains. To address these limitations, we recast data mixing as a
multi-objective optimization problem, enabling the application of multi-objective
optimization theory. Furthermore, we propose a hybrid method that leverages both
data resampling and domain loss reweighting to directly address the mismatch
between the training of proxy models and their base counterparts. Empirically, we
evaluate our methodology against established baselines on The Pile, SlimPajama,
and Wiki40b datasets, demonstrating its superiority in enhancing performance
across diverse domains by speeding up the convergence of the 1B model to 40%
compared to traditional training. Our extensive experiments show that our approach
not only improves modeling ability across training domains but also surpasses prior
methods on downstream tasks.

1 INTRODUCTION

Optimal data representation in the pretraining of large language models (LLMs) remains a pivotal
challenge that directly impacts model utility and efficiency (Chowdhery et al.| [2023; Touvron et al.|
2023)). It is often the case that an LLM pre-training project will have a limited token budget for
training and available data sources with a much larger combined token count. Decisions will need to
be made about how much data to include from each source.

Learning multiple tasks simultaneously can be a challenging optimization problem because it involves
multiple objectives (Vandenhende et al.,2021). The most popular multi-task learning (MTL) objective
in practice is the average loss over all tasks. Even when this average loss is exactly the true objective
(as opposed to only caring about some specific tasks), directly optimizing the average loss could lead
to undesirable performance, e.g. the optimizer struggles to make progress so the learning performance
significantly deteriorates. A known cause of this phenomenon is the conflicting gradients (Yu et al.}
2020): gradients from different tasks 1) may have varying scales with the largest gradient dominating
the update, and 2) may point in different directions so that directly optimizing the average loss can
be quite detrimental to a specific task’s performance. Base on these findings, we show how current
optimization-base methods for data mixture problem are sub-optimal and better training methods
should be adopted.

While the question of data mixtures has gained interest in the recent years, the prevalent strategy of
using heuristically determined domain weights or optimizing weights based on limited downstream
tasks is increasingly recognized as inadequate for dealing with the complex dynamics of domain
interactions (Gao et al.| 2020; Du et al.| 2022). Driven by the need for a principled optimizer, we
introduce a multi-objective optimization technique to determine the most effective domain mixing
ratios. This strategy aims to maximize the general learning capabilities of LLMs by deriving weights
that can benefit every domain without overfitting to particular ones. Implemented on the diverse
domains of The Pile (Gao et al.,|2020) and SlimPajama (Soboleva et al.| |2023) datasets, our approach
offers a promising approach toward more effective and generalizable language models, demonstrating
significant improvements in learning efficiency and domain robustness. Figure [T| shows that our
proposed methods require 65% of the tokens (35% speed up) versus baseline on both of the datasets.
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Figure 1: Validation perplexity, unweighted average over 22 domains from The Pile and 7 domains
from SlimPajama. HYBRID multi-objective optimization methods require 65% of the tokens (35%
speed up) versus baseline on both of the datasets. At the end of the training, they obtained 11% and
7% on The Pile and SlimPajama, respectively

At the end of the training, they obtained 11% and 7% on The Pile and SlimPajama, respectively. In
summary, our contributions could be summarized as follows:

* We first reformulate the data mixture problem as a multi-objective optimization problems,
from which we can leverage theoretical-grounded methods for optimizing different training
losses.

* We point out the mismatch between the training of the proxy model and the base model.
Based on this observation, we propose hybrid approaches to the data mixing problem that
could give us additional degrees of freedom to either learning domains without biases or
incorporate preference during training, targetting at improving downstream performance.

* On well-established benchmarks, we conduct extensive experiments to validate our proposed
method. Empirically, our methods are not only effective on different datasets but also robust
to training conditions and allow practitioners to transfer the obtained mixing ratios to
different model sizes or tokenizers.

2 BACKGROUND

In this section, we first present the concept of multi-objective optimization (MOO). Then we introduce
data mixture problem set up and discuss how finding the optimal data mixing ratio is inherently a
multi-objective optimization.

2.1 MULTI-OBJECTIVE OPTIMIZATION

Given m objective functions f; : R™ — R, € [m] parameterized by x € R", the multi-objective
optimization problem could be formulated as follows:

min F(x) = [f1(x),+- -, fs(x)] m

A key difference between sing-objective and multi-objective optimization is that there is often no
optimal solution for a MOO problem that is better than all other solutions in every individual objective.
Due to this conflict nature among objectives, one is often interested in (i) finding Pareto solutions,
from which we can not improve all objectives simultaneously or searching for an updating direction
that can optimize all objectives without biases.

Pareto dominance: A solution z; € R" is said to be dominated by solution 2 € R™ if and only if:
Vi € [m], fz (.1‘2) < fz (331), and E|j S [m] such that fj (1‘2) < fj (.%‘1), denoted by F(a?g) = F (1‘1)

Pareto optimality A solution z* is Pareto optimal if and only if it is not dominated by any point
in R™. The set of all Pareto solutions is called the Pareto set and the image of those Pareto optimal
solutions is called the Pareto front.



In the context of deep learning, x often represents model parameter while { f;(-)}7, is the list of
objectives of interest (e.g. classification, regression losses...). In practice, finding a Pareto solution is
intractable due to non-convex objectives and gradient-based optimizers. Instead, prior work often
search for the Pareto local optimal set containing solutions that are Pareto optimal on a neighborhood
of itself.

2.2 DATA MIXTURE

We start by describing the data mixing setup: Given K training domains (e.g. Arxiv, Book, ...):

D1,Ds,...,Dk. Alanguage model 6 is trained on this data composition , our goal is to find model
parameters 6* that minimize the domains’ respective losses: ¢1(0) = Ep, ¢(6):
mzn9[€1(9),€2(9)7,£;{(9)] (2)

The overall objective is in fact a vector-value next-token prediction loss function over training
domains. The data mixing problem aims to find the « to sample domains’ data. The final data mixture
used to train the full-size language model is constructed by first sampling a domain according to the
domain-wise distribution «, followed by uniformly sampling a batch B from that domain.

The formula 2] allows us to leverage existing results from multi-objective optimization theory. From
which we found that, simply minimizing the average/worst case domain loss may result in putting
more weights on easy domains, which potentially cause the overfitting to those domains. Thus, in
this paper, we propose to either adopt impartial multi-objective optimization solvers that aim to
universally minimize domain losses without bias toward any specific domain or incorporate user
preference during the training, targeting at improving downstream performance.

3  PROPOSED METHOD

In the following, we will describe how to optimize « guided by training a proxy model of parameters
6 on Dy,.qin. We denote by £;(6) the expected next token prediction loss of the proxy model on
domain D;.

In this paper, we propose to adopt multi-objective optimizers for minimizing multiple domain losses,
namely MGDA (Sener & Koltun, 2018) and IMTL (Liu et al.). In short, MGDA finds the minimum-
norm point in the convex hull composed by the gradients of multiple objectives while IMTL searches
for the updating direction that has equal projections on per-objective gradients {g;} (scale-invariant).

gMGDA = afgminggCH||g||2

where

k
CH = {GTa:Zaigi | aGAk}

i=1

MGDA theoretically guarantees that the obtained solution is a Pareto stationary point, from which
we can not simultaneously improve an specific object without hurting another while IMTL presents a
closed-form solution, which learns shared parameters without any bias.

Formally, let {u; = g;/ ||g:||}, IMTL searches for the updating direction g s.t. gu; = gu/ &
g(u — ui)T = 0,V2 < i < k, which yields the following solution Zle «o;g; where a =
qUT (DUT)™".

Overall, our proposed method is demonstrated in Figure[2] which consists of two separate stages. In
the first stage, we train a proxy model using multi-objective optimizers (e.g. MGDA, IMTL or EPO).
We then take the average mixing ratio during the training of the proxy model to either resample the
data or reweight the domain losses. In practice, we find that using hybrid methods, uniformly sample
data from every domains then reweighting domain losses based on obtained mixing ratio, often yield
best results.
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Figure 2: Overview of our proposed method.

4 RELATED WORK

Conceptually, approaches to the optimal data mixture problem can be divided into the following
categories:

Optimization-based approaches Prior optimization-based methods for mixing ratio identification:
DoReMi (Xie et al., [2024) employs GroupDRO (Sagawa et al., 2021)), which was proposed for the
problem of “learning from multiple groups”, where the training data is dominated by one of the group.
The updating formula of DoReMi is:

min max L(6, «) E ;-
0 acAk

Z 69 - rcf )

IED

However, DoReMi/GroupDRO focus solely on worst group and tend to neglect the knowledge transfer
between groups. DOGE (Fan et al., [2024) mitigates this drawback to some extent by minimizing the
average validation loss across domain using bi-level optimization.

o € argmin 1 4 (6" ()
acAk

s.t. 0% () € argmin y-, -y il (0)
0

However, the average loss among domains might not be a good proxy for indicating LM performance
due to the large variation in loss magnitude between domains. In practice, the perplexities vary
from 4.x to 44.x across training domains (Fan et al.|[2024)) and a low average training loss does not
guarantee good performance on held-out datasets, which we will empirically verify in the experiment
section.

Inspired by the use of multi-armed bandits (MAB) for auxiliary data selection in few-shot LLM
fine-tuning, Online Data Mixing (ODM) (Albalak et al., 2023) treats each data domain as an MAB
arm. They develop an algorithm to optimize the data mixing distribution dynamically, adapting to
training changes. By leveraging information theory, specifically using perplexity as a measure of
model uncertainty and expected information gain, ODM aims to increase the mixing ratio for the
most informative domains. The training loss per domain is used as a reward to guide this process.

Data scaling laws approaches

Data scaling laws explore interactions of data quantity, quality, and mixing proportions, as LLMs are
scaled up. Muennighoff et al.|(2024)) introduce scaling laws for data-constrained scenarios and |Goyal
et al.| (2024) try to extend this approach to deal with multiple data pools. Prior research has confirmed
that different datasets require different scaling (Hoffmann et al., 2022; Pandey, |2024)), thusYe et al.



(2024) and |Ge et al.| (2024) propose functional relationships to predict the impact of mixtures on
language modeling loss.

5 EXPERIMENTAL RESULTS

We first analyze the convergence behaviors of different multi-objective optimizers on a toy example.
We illustrate how well-developed methods for multi-objective optimization can surpass prior
optimizers for the data mixture problem. Then, we empirically demonstrate the effectiveness of the
proposed approach on various data mixture benchmarks. Due to space limit constraints, detailed
training configurations and additional results are deferred to the Appendix.

5.1 TOY EXAMPLE

For the toy optimization example, we examine the behavior of Baseline, DoReMi, DOGE, MGDA,
IMTL and EPO on the ZDT-2 problem (Zitzler et al., 2000). The obtained solution by each method is
indicated in blue points in Figure [3| while the Pareto front is represented by the red curve.

min (f1(z), fa(z)) = (21, g(2)h (21,9(x))) 3)
where 0 < x; <1Vi € [30] and g(z) =1+ %Z?ZQIEZ' s hi(fi,9)=1— (fl/g)2 .
The Pareto solution of ZDT-2 is givenby 0 < z] <1 and =z =0foriv=2,...,30.

Overall, those methods that are currently used for the data mixture problem are biased toward f1(x),
which is a linear objective and easy to optimize. In contrast, MGDA and IMTL can obtain other
solutions that achieve low values for f5(xz) while EPO can find x based on our desired preferences

(e.g. such that fi(z) =~ 2f2(x) or f1(2) = fa(2)).
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Figure 3: While Baseline, DoReMi, and DOGE primarily focus on the first (easier) objective, MGDA
and IMTL are capable of obtaining solutions that achieve low loss on the second objective as well.
Moreover, EPO enables the adjustment of preferences to focus more or less on individual objectives .

5.2 TRAINING AND EVALUATION

Datasets For our experiments, we use The Pile (Gao et al.l [2020)), an 825Gb open-sourced language
modeling dataset comprising 22 smaller datasets from various domains including Wikipedia, Github,
and PubMed Central. Similarly, we include SlimPajama (Soboleva et al., |2023) which is a
deduplicated version of RedPajama (Computer, |2023)) consisting of data from 7 domains (Arxiv,
Book, C4, CommonCrawl, Github, Stackexchange, Wikipedia) and Wiki40B (Guo et al., 2020) for a
multilingual setting, where we train the model on 13 different languages.

Training setup For experiments on The Pile and SlimPajama, we train a small 82M decoder-only
transformer (Vaswanil, 2017) as the proxy model for domain reweighting for 10k iterations then train



a 1 billion parameter model as the base model. We train both the proxy and base models using a
batch size of 16 sequences per GPU, and accumulate gradients across 8 GPUs in parallel (G = 8) to
reach a total batch size of 128 samples. We train for a total of 100k steps with a maximum token
length of 512, reaching 6.5 billion tokens. Similarly, for the multi-lingual experiment, we train 155M
base models with the global batch size of 64 using a smaller-scale hardware (A100 40GB versus
A100 80GB).

Evaluation protocol To validate the performance of our approach and the baselines, we compute
perplexity on held-out validation and test data from each domain. We measure the average perplexity
across all domains and 5-shot reasoning ability across a series of reasoning tasks, covering diverse
knowledge fields including physics, social science, logic inference etc.: ARC easy (Clark et al., 2018)),
BLiMP (Warstadt et al.| [2020), Copa, RTE, WiC (Wang et al., 2019), LAMBADA standard and
OpenAl Paperno et al.[(2016), LogiQA (Liu et al.,[2021), MC Taco (Zhou et al.,2019), MuTual (Cui
et al.;,2020), OpenBookQA (Mihaylov et al.| 2018), PIQA (Bisk et al.,[2020), QQP, SST-2 (Wang
et al.), Social IQA (Sap et al.} 2019), and WinoGrande (Sakaguchi et al., |2020). We use LM-eval
Harness (Gao et al.|[2024) to assess the few-shot reasoning performance.

Baselines We consider the following data mixture approaches: (i) optimization based methods:
DoReMi (Xie et al.| [2024)), DOGE (Fan et al., [2024) and (ii) scaling-law methods: REGMIX (Liu
et al.,|[2024) and BIMIX (Ge et al., [2024) apart from the original mixture baseline. While DOGE
and our methods train a single 82M proxy model, DoReMi trains a reference model and a proxy
model with the same size of 82M. We directly take the reported mixing ratio of BIMIX, which is
produced by fitting 5K scaling-law coefficients (i.e. 110 for The Pile and 35 for SlimPajama). For
REGMIX, since they did not experiment with the same datasets, we train 64 proxy models of size
27M to produce the mixing ratio using their released codebase for each dataset.

5.3 EXPERIMENTAL RESULTS

The average validation across domains on The Pile and SlimPajama after 100k iterations are reported
in Table[l] It is interesting that optimization-based methods like DoReMi and DOGE are worse than
the original baseline. By contrast, scaling-law methods REGMIX and BIMIX perform better but
at the cost of training multiple proxy models. While using a single proxy model, multi-objective
optimization methods illustrate superior performance, and enhance the pretraining over baseline on
all datasets. Furthermore, our hybrid methods can improve themselves by correcting the mismatch
between the training of the base and the proxy models, i.e. both employing uniform sampling and
reweighting the loss functions.

Table 1: Average validation perplexity across domains: We calculate the unweighed average
validation perplexity of 1B models across 22 domains of The Pile and 210M models 7 domains of
SlimPajama, respectively.

HYBRID HYBRID
Dataset BASELINE DOREMI DOGE REGMIX BIMIX MGDA IMTL MGDA IMTL

The Pile 12.71 13.03 15.36 13.00 11.69 11.75 11.66 11.42 11.32
SlimPajama 13.66 13.29 17.75 12.94 12.92 12.81 12.81 12.75 12.74

The performance of baselines on few-shot reasoning tasks is presented in Table[2] from which we
can observe the impacts of different data mixtures on downstream tasks. In particular, BIMIX is the
only method among baselines that can surpass baseline in terms of average score. Multi-objective
optimizers still exhibit superior performance, with up to 1 point of improvement over the original
baseline.

Table [3] shows per-domain validation perplexity on 13 different languages from Wiki40B. In this
experiment, DOGE and DoReMi achieve 3.9% and 1.3% improvements over the original baseline,
respectively. While this task shows such small improvements, our hybrid methods still achieve the
best performance among comparative methods, with approximately 4.4% score gain compared to
naive training.



Table 2: Downstream performance: Average 5-shot performance of 1B models on a wide-range of
reasoning tasks. Models trained with hybrid methods achieve the best overall performance.

arc  blimp copa lambada lambada logiga mc¢ mutual open piga qqp rte social sst2 wic wino | avg

Method easy openai standard taco bookqa iqa grande| —
BASELINE 437 826 640 25.5 22.5 22.1 63.3 61.1 164 624 573 513 368 509 486 514 |473
DOREMI 424 789  61.0 18.1 15.0 218 658 61.2 142 583 486 513 358 51.0 488 532 |453
DOGE 375 788  59.0 16.9 13.7 230 616 61.2 140 578 442 505 351 521 492 529 | 442
BIMIX 433 812  65.0 233 20.3 249 611 61.8 146 60.8 590 53.1 366 548 49.1 528 | 476
REGMIX 436 828  60.0 25.8 182 243 534 61.2 13.0 604 476 49.1 36.1 509 478 526 |454
IMTL 439 831 640 26.9 22.1 246 642 62.0 162 608 520 534 371 51.0 497 519 |477
MGDA 431 822 610 28.0 234 240 617 61.9 164 609 614 520 374 51.0 509 534 | 480
HYBRID IMTL 437 822  65.0 27.8 225 241  64.6 61.5 164 600 593 538 359 512 517 523 |483
HYBRID MGDA | 439 826 640 29.6 25.0 238 647 61.6 166 602 57.6 495 365 556 509 513 |483

PILE-CCONLY | 468 832 710 27.9 24.3 23.7 636 61.9 168 658 485 534 373 523 497 515 | 486

Table 3: Multi-lingual performance: We train 155M base model on ca-Catalan, de-German,
en-English, es-Spanish, fr-French, it-Italian, ja-Japanese, ko-Korean, nl-Dutch, pt-Portuguese, ru-
Russian, vi-Vietnamese, zh-cn-Simplified Chinese languages.

Model | ca de en es fr it ja ko nl pt ru vi  zh-cn | avg
BASELINE 3.806 5958 6.654 5496 5.086 6219 8274 5353 5819 6299 5721 5455 8.772 | 5948
DOGE 4.583 7381 7.180 6.123 5.801 6.365 6.775 4994 5956 5.618 5840 4.668 5810 | 5871
DOREMI 4275 6.636 7.203 5.853 5345 5808 6.733 5266 5411 5522 5264 5029 6.663 | 5715
IMTL 4312 6.636 6972 5716 5235 5768 6.759 5.140 5382 5518 5593 5.044 6.809 | 5.708
MGDA 4289 6.670 7.007 5.711 5217 5.691 6.852 5.021 5373 5512 5.631 5082 6930 | 5.711

HYBRID IMTL | 4281 6.595 6955 5.687 5.213 5702 6.758 5.159 5354 5487 5.634 5.008 6.818 | 5.689
HYBRID MGDA | 4265 6.597 6.986 5.685 5.196 5670 6.821 5.064 5338 5484 5691 5.052 6.904 | 5.694

5.4 CROSS-TOKENIZER GENERALIZATION

As hypothesized by Xie et al.|(2024); |Albalak et al.|(2023)), different tokenizers may lead to different
domain weights, which explains the gap between reported DoReMi results and its reimplementation
score. We here conduct an experiment to quantify the robustness of the obtained mixing ratio found
by 82M proxy model on The Pile dataset tokenized by GPT-2 (Radford et al., 2019) tokenizer. We
retrain 1B base models from scratch on The Pile dataset but tokenized using GPT-NeoX (Black et al.|
2022)) tokenizer. Please note that the mixture obtained by BIMIX is from proxy models on tokenized
data by GPT-NeoX, so we do not consider its performance as cross-tokenizer generalization but still
include it here for benchmarking.

—e— BASELINE (15.00) —@— DOREMI (15.43) IMTL (13.67)
REGMIX (15.47) —e— DOGE (18.15) —&— HYBRID MGDA (13.62)
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Figure 4: Evolution of validation perplexity on The Pile in cross-tokenizer generalization: We
obtain data mixtures using 82M GPT-2 proxy models and use them to train a 1B model with GPT-
NeoX tokenizer.

From Figure[d we can observe that our methods obtain the lowest average validation perplexities
among all baselines. Interestingly, while BIMIX is originally obtained from GPT-NeoX tokenizer, its
performance lags behind multi-objective optimization methods. Those results show the effectiveness



and robustness of the obtained mixing ratio beyond using the same tokenizer for both proxy and
base models and we expect that we can train different base models using different tokenizers without
retraining proxy models accordingly.

5.5 ABLATION STUDIES

Until now, we have presented the effectiveness of the proposed method on different datasets and
benchmarks on different setups. In this section, we conduct further ablation studies to showcase the
robustness of proposed methods and behaviors of comparative methods.

Mixing ratio across proxy training configurations We first present the evolution of the mixing ratio
using different optimizers in Figure 5] where we vary proxy model size (60M, 82M and 124M) and
number of training steps (5k, 10k and 20k). We choose the SlimPajama dataset in this experiment,
which has 7 domains, for convenient visualization.
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Figure 5: Ablation on different configurations for training proxy models: SlimPajama mixture
obtained by baselines on different hyperparameter configurations. Mixing ratios are consistent across
model sizes and vary across different methods, which motivate us to use the loss reweighting ratio of
small models to guide the training of large models.

Overall, the mixing ratios obtained by the same optimizer are relatively consistent across training
configurations. Even though, DOGE and DoReMi show the fluctuating trend during training while
MGDA and IMTL show their great stability. Particularly, after the first 1k iterations, the obtained
mixing ratios almost remain till the end of training.

Training loss In the toy example, we show that Baseline, DoReMi and DOGE are easy to overfit
to the easy objective. In Figure[6] those two methods also obtain the lowest training losses as they
sample a lot of examples from easy domains, e.g. Github in this case. However, these low training
loss values do not translate well to validation performance and their performance, in fact, lags behind
other baselines.
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Figure 6: Training loss, While the original mixture often obtains highest training loss among
baselines, DoReMi and DOGE both put a lot of their mixture proportion on easy domains and obtain
low training loss.

Performance of proxy models While correcting the mismatch between the training of proxy and
base models could help improve the performance of base models, those multi-objective optimizers
are better than conventional training methods.
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Figure 7: Proxy validation perplexity: Multi-objective optimization methods could help optimize
domain losses better consistently across domains.

Figure [7] displays the validation perplexities across 7 domains of the SlimPajama dataset, where
MGDA and IMTL obtain low validation loss while DOGE fails to achieve the level of aforementioned
optimizers. We conjecture this is due to the fact that DOGE uses a regularization term via Bregman
divergence to promote the stability of the mixing ratio by penalizing the change
between two consecutive steps. However, as shown in Figure [2] its obtained mixing ratio still
fluctuates through time.



6 CONCLUSION

In this paper, we propose to formulate the data mixture problem as a multi-objective optimization,
which allow us to leverage existing theoretical grounded results from multi-objective optimization
theory. Base on this new formulation, we propose to correct the mismatch between the training of the
base and proxy models of prior methods. Empirically, we showcase the effectiveness of proposed
methods on various benchmarks and setups.
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A APPENDIX

Due to space constraints, some details were omitted from the main paper. We therefore include the
detailed experimental setup (Appendix [A.T) and additional results (Appendix [A.2) in this section.

A.1 TRAINING DETAILS
A.1.1 ToOY EXAMPLE

For the ZDT-2 problem, we randomly sample 100 samples x; ~ Uniform(0,1)3° for i =
1,...,100. And update them using Adam (Kingmal [2014) optimizer with the learning rate of
0.001 for 1000 iterations without any scheduler.

A.1.2 LANGUAGE MODEL TRAINING

Following (Fan et al.,[2024), we train all models, except 1B ones, with the maximal and minimum
learning rates are 5 x 10~% and 1 x 10~%, respectively. These numbers for 1B model are 1.5 x 104
and 2 x 107°. The weight decay for all models is set as 0.01, the gradient clip is set as 1.0. All
models are trained with AdamW (Loshchilov & Hutter, |2017) with the default number of training
iterations is 100k.

Table 4: The detailed model configuration for different model sizes.

Experiment | The Pile & SlimPajama | Multi-lingual | NeoX
Vocabulary Size | 50304 50304 50304 50304 50304 50304 50304 | 100000 100000 | 50277
Tlayers 2 3 6 12 24 16 16 4 16 16
Toheads 8 6 12 12 16 16 32 4 8 32
dembedding 256 768 768 768 768 1600 2048 256 512 2048

NumParameters‘ 27TM 9M  120M 163M 248M 653M 1B ‘ 55M ISSM‘ 1B

A.2 ADDITIONAL RESULTS
A.2.1 TOY EXAMPLE

A.2.2 ABLATION ON DIFFERENT BASE MODEL SCALES

Table 5: Average validation perplexity across domains: We calculate the unweighed average
validation perplexity of 1B, 653M and 248M models across 22 domains of The Pile.

HYBRID HYBRID
Model size | BASELINE DOREMI DOGE REGMIX BIMIX MGDA IMTL MGDA IMTL
1B 12.71 13.03 15.36 13.00 11.69 11.75 11.66 11.42 11.32
653M
248M

Here’s the data converted to a LaTeX table:
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Table 6: Domain weights on The Pile

Dataset Baseline REGMIX BIMIX DoReMi DOGE IMTL MGDA
Pile-CC 0.1121 0.03805  0.0507 0.05242 0.00619 0.0404  0.04245
PubMed Central 0.1071 0.00355  0.0088  0.00056 0.02525 0.05073 0.05923
Books3 0.0676 0.02321  0.0392  0.00285 0.01189 0.04591 0.04911
OpenWebText2 0.1247 0.01065 0.024  0.01156 0.00759 0.04034 0.04124
ArXiv 0.1052 0.00034  0.0786  0.06881 0.09824 0.04351 0.03291
Github 0.0427 0.00648  0.0648 0.06346 0.60794 0.03748 0.02414
FreeLaw 0.0386 0.13647  0.0441 0.0186  0.01151 0.0444 0.04166
StackExchange 0.0929 0.062 0.0812  0.27021 0.00559 0.04144 0.03504
USPTO Backgrounds 0.042 0.00995 0.0373 0.00175 0.0148 0.03923  0.0332

PubMed Abstracts 0.0845 0.01019  0.0228 0.00674 0.00117 0.04154 0.04182
Gutenberg (PG-19) 0.0199 0.00032  0.0155 0.02045 0.01253 0.04508 0.04657
OpenSubtitles 0.0124 0.00413  0.0187 0.00112  0.0028 0.05681 0.06785
Wikipedia (en) 0.0919 0.22724  0.0443  0.00287 0.01833 0.03949  0.0351

DM Mathematics 0.0198 0.00312  0.0372  0.03637 0.04542 0.05644  0.0617

Ubuntu IRC 0.0074 0.18762  0.0423 3.83E-05 0.02128 0.06164 0.06164
BookCorpus2 0.0044 0.05623  0.0727  0.16007  0.00587 0.05047 0.05785
EuroParl 0.0043 0.17261 0.0464 0.01647 0.00488 0.04562 0.03424
HackerNews 0.0075 0.01685 0.0616 0.04021 0.00146 0.04433 0.05238
YoutubeSubtitles 0.0042 0.00722  0.0387 0.04592 0.03757 0.0418 0.03108
PhilPapers 0.0027 0.00038  0.0435 0.0474  0.01856 0.04211 0.0331

NIH ExPorter 0.0052 0.02194  0.0789 0.11216 0.00181 0.04286 0.04381
Enron Emails 0.003 0.00143  0.0486  0.01995 0.05443 0.05443 0.07382
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