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Abstract. Our paper studies the continual learning (CL) problems in
which data comes in sequence and the trained models are expected to
be capable of utilizing existing knowledge to solve new tasks without
losing performance on previous ones. This also poses a central difficulty
in the field of CL, termed as Catastrophic Forgetting (CF). In an at-
tempt to address this problem, Bayesian methods provide a powerful
principle, focusing on the inference scheme to estimate the importance
of weights. Variational inference (VI), one of the most widely used meth-
ods within this vein, approximates the intractable posterior by a factor-
ized distribution, thus offering computational efficiency. Notwithstanding
many state-of-the-art performances in practice, this simple assumption
about the posterior distribution typically limits the model capacity to
some extent. In this paper, we introduce a novel approach to mitigate
forgetting in the Bayesian approach via enriching the posterior distribu-
tion with mixture models, which intuitively promotes neural networks to
acquire knowledge from multiple tasks at a time. Moreover, in order to
reduce the model’s complexity growth when the number of components
increases, we propose a solution that conducts low-rank decomposition
on the variance of each component based on neural matrix factorization.
Extensive experiments show that our method yields significant improve-
ments compared to prior works on different benchmarks.

Keywords: Continual Learning · Catastrophic Forgetting · Gaussian
Mixture.

1 Introduction

Despite the fact that artificial intelligent agents have surpassed human beings
at many specified tasks, their abilities are still far behind humans in terms of
performing well on wide-ranged, disjointed problems. However, this could not be
completely comparable, since current systems often fail to retain the previous
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knowledge while learning new tasks [13], whilst humans have a great capability
of learning in a continuous manner: accumulating knowledge and avoiding for-
getting. Continual learning, therefore, has emerged in recent years as a learning
regime, allowing deep learning models to learn sequential tasks efficiently.

A branch of preliminary work in CL [14, 1, 5, 11] capitalizes on the idea of
injecting uncertainty into the neural network’s parameters, which is known as
Bayesian Neural Networks (BNNs) [2]. Unlike the original NN, BNN considers
its parameters as random variables drawn from a given prior distribution. Based
on this framework, Variational Continual Learning [14], or simply VCL, was
one of the first proposals to formulate the continual learning as an approxima-
tion Bayesian inference problem in which the combination of online variational
inference with an efficient sampling method soon achieved significant results.
Uncertainty-based Continual Learning [1] then re-interpreted the KL-divergence
term in VCL, defined the concept of uncertainty for hidden nodes and modified
the KL-divergence term following the principle: the more uncertain a parameter
is, the more likely it will be changed in subsequent tasks. Another advantage
this method brings is that the number of parameters stored is less than other
earlier works, which placed the importance on weights [11]. By contrast, Varia-
tional Generative Replay (VGR) [6] has shown that likelihood-focused methods
- those that estimate the likelihood of the preceding tasks with synthetic data
rather than directly employ the model’s posteriors as prior for successive tasks
- can outperform prior-focused methods. In a recent study, Uncertainty-guided
Continual Bayesian Neural Networks (UCB) [5] defined a metric for measuring
the weight’s importance and thereby developed an appropriate training strategy.

In spite of the variational inference’s popularity and the advantages it brings,
the inference quality is still heavily affected by the parametric family of the pos-
terior approximation distribution. Both recent methods VCL and UCB utilized
a simple diagonal covariance Gaussian for posterior approximation, which is
likely not flexible enough to match the true posterior, especially in the continual
learning context. That being said, the nature of the data stream exhibits a large
inconsistency. Because each of them is sampled from a different distribution,
the problem of CF, that existing approaches suffer from, could be explained as
the well-known mode-seeking in statistics, where the unimodal distribution is
unable to capture information in multiple modes. We use an example in Fig. 1
as a simple illustration for this conclusion, a trimodal Gaussian mixture (blue
curve) is approximated by a single Gaussian distribution and another mixture
of two components. While both of these approximation distributions cover the
middle mode, the RHS is covered by the mixture only. Since the overall range
and shape of the mixture is much closer to the true distribution, it is obviously
a better approximation to the target trimodal mixture.

Meanwhile, choosing the more expressive (i.e. richer representation capacity)
variational family could help obtain better inference. With this intuition in mind,
recent studies that go beyond mean-field variational inference are: normalizing
flows [16], auxiliary variables [12] and mixture models [7]. Firstly, normalizing
flows is a powerful framework that allows simple probabilistic density functions
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Fig. 1: The approximation abilities of Gaussian distribution and Mixture model.
Given the true distribution that is a mixture of 3 Gaussian distributions
0.2N (−1, 0.2) + 0.6N (0, 0.2) + 0.2N (1, 0.2), KL-divergence is used to find
the approximation of the true distribution. The learned Gaussian distribu-
tion is N (0, 0.208) while the learned mixture of 2 Gaussian distributions is
0.754N (−0.007, 0.214) + 0.246N (1.003, 0.197).

(PDFs) to be iteratively transformed into the target PDFs via a chain of invert-
ible mappings. Secondly, auxiliary variables are included in the posterior in order
to augment itself into more expressive and structured distributions. Finally, the
mixture model is deemed to have the ability to approximate any given distribu-
tion with arbitrary closeness. However, all the directions seem to be impractical
to apply to BNNs in the continual learning context, since their need is to add a
huge number of extra parameters. In this work, we focus on an efficient solution
to can exploit Gaussian mixture approximations in CL.

The main contributions of our paper could be depicted as follows: first, we
present a novel inference method exploiting the Gaussian Mixture as a posterior
approximation distribution and an information-theoretic view on how this could
handle the CF. Accordingly, an efficient learning algorithm is also proposed,
combining the Gumbel softmax reparameterization trick and the closed-form
upper bound of KL diverge between two mixture models. Moreover, we employ
a parameter reduction technique using Neural matrix factorization [4], which
offers computational complexity benefits required for training. Finally, our in-
ference process is experimentally proved to be widely incorporated into existing
Bayesian-based learning methods for CL.

2 Backgrounds

2.1 Bayesian Inference

Consider the Bayesian Inference in the supervised learning setting, given the
dataset D = {xi, yi}ni and a BNN parameterized by θ following the prior dis-
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tribution p(θ). Typically, the main goal of Bayesian inference is to derive the
posterior distribution over the weights p(θ|D), which is in an intractable form
(i.e. involving integrals). The variational inference (VI) provides an efficient so-
lution in which the true posterior is approximated to a variational distribution
q(θ|λ) via minimizing the Kullback–Leibler divergence between these two dis-
tributions KL(p(θ|D)||q(θ|λ)). In the most popular form, both of the prior and
variational distributions are assumed to be Gaussian. In short, this optimization
is equivalent to maximizing the Evidence Lower Bound (ELBO) w.r.t variational
parameter λ:

L(θ) = Eq(θ|λ)log p(D|θ)︸ ︷︷ ︸
expected-log likelihood

−KL(q(θ|λ)||p(θ))︸ ︷︷ ︸
regularizer

(1)

The above objective function now can be optimized with the Stochastic Gradient
Variational Bayes (SGVB, [9]) estimator. More specifically, this process includes
two main steps: Reparameterization Trick and Monte Carlo sampling [9].

2.2 Bayesian approach in Continual Learning

Variational Continual Learning [14] used the online Bayesian update following
the Bayes rule, and the posterior after observing previous tasks would be the
prior of the next one. The sequential tasks are denoted as D = {D1,D2, . . . ,DT }.
Then, the posterior distributions are recursively computed as:

p(θ|D1:t) =
p(θ|D1:t−1) p(Dt)
p(Dt|D1:t−1)

(0 < t ≤ T ) (2)

With p(θ) as the prior distribution placed on θ. Due to the intractable property,
qt(θ) ≈ p(θ|D1:t) ∀ t is the tth task’s posterior approximation. Specifically, both
the prior q0 and posterior qi (i > 0) are chosen to be multivariate diagonal Gaus-
sian distributions to simplify the computation. The VCL’s objective function on
tth step is:

LVCL(θ) = Eqt(θ) log(p(Dt|θ))−KL(qt(θ)|qt−1(θ))

In a major advance in regularizing the change of the parameters, UCB [5]
estimates the importance of each weight by the multiplicative inverse of its stan-
dard deviation Ω = 1

σ . According to this notion of importance, they controlled
the parameter-wise learning rate update at each step as:

Ωµ ←
1

σ
⇒ αµ ←

αµ
Ωµ

Ωσ ← 1⇒ ασ ←
ασ
Ωσ

The learning rate scheduler in UCB aimed to lessen the substantial shifting in
important parameters, placed on their inherent uncertainty. This also provided a
memory-beneficial consequence, since it neither accesses the past data nor stores
the quantities associated with previous tasks.
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2.3 Gumbel softmax and categorical reparameterization

Normally, training a neural network often involves backpropagation through a
chain of continuous-valued and differentiable functions. Even so, the discrete
random variables used in stochastic neural networks to represent distributions
sometimes yield a more meaningful and interpretable representation. In this
section, we briefly summarize some concepts behind the idea of smoothly relaxing
discrete distributions with Gumbel-Softmax and the way of training these models
with reparameterization trick (path-derivative) gradients.

Gumbel-Softmax trick [8]: Let α be an n-dimensional vector on simplex
∆n−1 = {(x1, x2, ...xn)| xi ∈ (0, 1),

∑n
i=1 xi = 1} and g = {g1, g2, ...gn} with

gi are i.i.d drawn from the Gumbel distribution G(0, 1). Clearly, sampling from
the multinomial distribution with probability vector given by α can be written
as y = soft max( logα+g

τ ) where τ > 0 is the temperature parameter.

3 Gaussian Mixture Approximation in Bayesian Inference
for Continual Learning

In this section, we first present our proposal that exploits Gaussian mixture
approximation in continual learning. Then we introduce a solution to reduce the
number of parameters of the Gaussian mixture.

3.1 Proposed Method

A proper choice of the posterior approximation distribution theoretically ex-
pands the searching space for the true posterior. Especially in continual learning
settings, neural networks must be learned on data from several tasks, a typ-
ically used unimodal Gaussian distribution is not rich and expressive enough
to approximate the true posterior of weights. Accordingly, a Gaussian mixture
approximation is more suitable to capture the multi-modality in data modeling.
We conducted a simple experiment to show how GM can be a better approxima-
tion to the true distribution than a single Gaussian distribution (Fig. 1). This
result provides convincing evidence to apply Gaussian mixture approximation
in learning multiple tasks (i.e. scenario of continual learning).

For continual learning, for each task, we approximate the true posterior of
weights to a Gaussian mixture instead of using unimodal Gaussian distribution
as in existing studies [14, 1, 5]. The approximate distribution is presented as
follows:

q(θ|λ) =

K∑
i=1

πi N (µi, σi) (π ∈ ∆K−1) (3)

Note that the posterior learned from the previous task is often used as the prior
in the current task [14, 1]. Therefore, both the prior and variational distributions
are Gaussian mixtures. They are plugged into Equation 1. However, optimizing
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the evidence lower bound (Equation 1) poses two main challenges. On the one
hand, KL-divergence between two Gaussian mixtures (the regularization term)
does not have a closed-form formula. On the other hand, sampling from such dis-
tributions typically involves categorical variables (the expected-log likelihood).
The lower bound in this case is thus difficult to optimize.

Algorithm 1: Reparameterization trick for Gaussian mixture

Input: Prior distribution: p(θ) and posterior: q(θ|λ) =
K∑
i=1

πi N (µi, σi)

Number of samples: N; temperature : τ

Output: Estimation of the log-likelihood Eq(θ|λ)log p(D, θ)

Function Log-likelihoodEstimation(p(θ), q(θ|λ), N, τ):
for n← 1 to N do

for k ← 1 to K do

uk ← µk + σk � εk where εk ∼N (0, 1)
gk ∼Gumbel(0, 1)

end

y = (y1, y2, . . . yK)← soft max( log (π)+g
τ

) // Gumbel softmax trick

hn ←
K∑
k=1

ukyk

end

return 1
N

N∑
n=1

log p(hn);

In terms of the first difficulty, the Kullback–Leibler divergence, fortunately,
has a closed-form upper bound [3]. Rather than directly maximizing the ELBO,
we substitute the KL divergence in Equation 1 with its upper bound. Theorem
1 presents the Upperbound KL.

Theorem 1. Consider 2 mixtures f(x) =
∑K
i=1 π

a
iN (µai , σ

a
i ) and

g(x) =
∑K
i=1 π

b
iN (µbi , σ

b
i )(π

a
i , π

b
i ∈ ∆K−1), we have the below inequality:

KL(f |g) ≤ KL(πa|πb) +

K∑
i=1

παi KL(N (µai , σ
a
i )|N (µbi , σ

b
i )) (4)

Regarding the latter challenge, Gaussian mixture is regarded as a consolidation
of the categorical and Gaussian distributions. We propose a strategy to approxi-
mate the expected-log likelihood (Equation 1) with Monte Carlo and reparame-
terization trick. Algorithm 1 presents the approximation of the expected-log like-
lihood. The discrete mixing coefficients y = {y1, y2, .., yK} are reparameterized
based on the Gumbel-Softmax trick. Then samples u = {u1, u2, .., uK}) gener-

ated by each Gaussian component are linearly combined: h =
K∑
k=1

ukyk to calcu-
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late the expected-log likelihood. Moreover, the mixture coefficient π is reparam-
eterized by a 1-1 transformation via softmax function: π = soft max(0, π̂1, π̂2,
. . . π̂K−1). For brevity, this turns the constrained optimization problem into an
unconstrained one that could be optimized by back-propagation gradient.

We emphasize that the proposed technique is model-agnostic, which means
that it is compatible with any Bayesian-based approaches. Without loss of gen-
erality, we analyze the application of our scheme on VCL [14] and UCB [5]. In
Algorithm 2, we derived the training algorithm for-almost-all continual learning
methods following the Bayesian principle. For those methods which adapt the
learning in each iteration (e.g. UCB, Sect. 2.2), a LearningRateUpdate proce-
dure, which takes the current learning rate α and parameter of interest λ and
returns the updated learning rate, would be retained as in the original study.

Algorithm 2: Training of proposed method in continual learning sce-
nario

Input: A sequence of T datasets DTt=1 = {x(n)t , y
(n)
t }

NT
n=1

Prior distribution pt(θ), number of samples : N

Learning rate αλ, temperature: τ

Output: Update the variational parameter λ for tth task
for t← 1 to T do

repeat
L1 = Log-likelihoodEstimation(pt(θ), qt(θ|λ), N, τ)
L2 = Upperbound KL(qt(θ|λ)|pt(θ))
L = L1− L2
λ = λ− αλ∇λL
αλ = LearningRateUpdate(αλ, λ) // Optional

until convergence;

end
return Updated variational parameter λ

3.2 Dimension reduction via neural matrix factorization

Using Gaussian mixture approximation leads to the number of parameters to
being multiplied (along with the size of components) in comparison with uni-
modal Gaussian approximation. Consequently, optimization via a typical algo-
rithm is expensive, and a dimensional reduction technique is necessary in this
case. Recently, [17] proposed an idea of decomposing variance of each Gaussian
component N ( . |µ, σ) in (3) by: σ = diag(H) = diag(UV T ) for some matrix
H ∈ RM×N , U ∈ RM×K , V ∈ RN×K and K is often set equal to a small pos-
itive integer. As a result, the number of parameters decreases from M × N to
(M +N)×K in each component. Experimental results showed that this matrix
factorization not only compresses the neural network, but also provides compet-
itive performance.
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Table 1: Average accuracy on final task

XXXXXXXXXMethod
Dataset permuted

MNIST
split

MNIST
fashion
MNIST

notMNIST

VCL-Gauss 73.77 96.9 95.7 92.1

VCL-GMM 75.52 97.77 97.78 93.9

Unfortunately, it would be tough to tune the target rank for factorization in
the continual learning scenario, since a large K causes the over-parameterization
in some tasks whereas a small K might be underfitting in the others. For a
better solution, we alternatively use neural matrix factorization [4] to overcome
this shortcoming and describe the amelioration gained in Sect. 4.4. With H ≈
MLP(U, V ), this dimension reduction is no longer a low-rank approximation. The
density function of each Gaussian component in the posterior is: N ( . |µ, σ) =
N ( . |µ, f(U, V )) where f is defined as the multilayer perceptron parameterized
by θ.

4 Experiments

To study the contributions of the above methodologies in the continual learn-
ing scenario, we conducted extensive experiments in comparison with earlier
baselines, which are also governed by the Bayesian regime. Additionally, in the
last subsection, we analyze the effect of the matrix factorized used in dimension
reduction. All the results are averaged on five random seeds.

Datasets: The datasets for evaluation are MNIST, fashion MNIST and
notMNIST. The detailed settings are described in each of the following sections.

Evaluation metrics: At the point our model has been trained on i consec-
utive tasks so far, let Ri,j be the accuracy of the achieved on jth task. We use
two different benchmark protocols (higher is better) to evaluate the performance

at Tth task: ACCT = 1
T

∑T
i=1RT,i and BWTT = 1

T−1
∑T−1
i=1 RT,i − Ri,i. Con-

ceptually, the Average accuracy (ACCT) score is to measure model’s overall
performance, whereas Backward Transfer (BWTT) indicates its knowledge
transfer ability on preceding tasks.

4.1 Task-incremental with multi-head architecture

First, we incorporate the introduced techniques into VCL on the four below
benchmark datasets:

– Permuted MNIST: [10] is a variation of the original MNIST, in which the
image’s pixels in are randomly shuffled via a random (and fixed) permutation
at each task.
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– Split MNIST: [18] MNIST is partitioned into five subsets. In particular,
each of them comprises images from two different classes, namely 0/1, 2/3,
4/5, 6/7, 8/9.

– FashionMNIST, NotMNIST: Similar to the split MNIST, our model
would be incrementally trained in five separated binary classification tasks.

We replicate the model architectures used in [14], which is composed of two
fully connected layers (100 units each for permuted MNIST and 256 for split
MNIST). The given results in Table 1 show that VCL with mixture posterior
significantly outperforms the one with single diagonal Gaussian in terms of Av-
erage accuracy (1− 2% each dataset).

Ordinarily, the architecture of a discriminative model can be divided into
two parts: classifier (final layer) and extractor (earlier layers), the catastrophic
forgetting might occur on two components with different degrees, depending on
the data. Various methods [14, 15] relied on the additional information about
task identification at inference time, as such, to avoid CF in the classifier.

4.2 Task-incremental with single-head architecture
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Fig. 2: Gaussian and Gaussian Mixture on UCB

The VCL’s prerequisite about task boundaries, however, is rarely feasible in
the use cases. In contrast, UCB implemented a single head network for all tasks,
thus becoming an effective baseline. Before digging deeper into the experiment
result, we briefly recall a minor difference between UCB and VCL, which lies in
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the chosen prior. UCB uses a Gaussian mixture of two components (as mentioned
in [2]) with the weight factor π.

To ensure a fair comparison, the model architecture again remains as the
original UCB implementation +. Moreover, we carefully select π on different
values (0.25, 0.5, 0.75). We then plot the overall performance on split MNIST,
fashion MNIST and notMNIST in Fig. 2.

4.3 Task-incremental with data overlapping

Up to now, many prior works focused on datasets with isolation characteristics,
which means there is no class overlapping in two separated tasks. To the best
of our knowledge, this is the first experimental setup to simulate the repetition
of data at different times. For example, the MNIST dataset now is allocated for
nine classification problems: 0/1, 1/2, 2/3, . . . , 8/9. This larger correlation allows
the learners to selectively transfer information between tasks in a soft way. We
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observe that our proposed method in this setting produces stable outputs: the
performances on a range of hyper-parameters (ACC curves stay closed to each
other for all values of num component ∈ {2, 3, 4}) and the knowledge transfer
abilities (BWTs almost keep unchanged).

4.4 Additional experiments about dimension reduction

In Sect. 3.2, we suggested that neural matrix factorization can compact the vari-
ational approximation for the covariance since it reduces the number of parame-
ters without diminishing the capacity. In the implementation, we employ a two-
hidden-layer MLP with the size of (2K,K,K, 1) which decreases the number of

+ https://github.com/SaynaEbrahimi/UCB
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trainable parameters for each component from 2MN toMN+K(M+N+3K+1)
and offers comparatively less resource in training when M,N >> K. With simi-
lar strategies, Fig. 4 quantify the impact of this technique in Fashion MNIST and
NotMNIST datasets. We observe ∼1% increase in average accuracy on almost all
experiments, especially 2, 4% (from 93, 8 → 96, 4) in the case of 4 components
GMM on NotMNIST.
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Fig. 4: Neural matrix factorization on multi-head VCL

5 Conclusion and future work

In this paper, we propose a framework, which is applicable to any Bayesian-based
approach for continual learning. Our methodology unifies several recent propos-
als in variational inference and latent feature models and entails significant gains
in the model’s performance. We found that it is beneficial for incorporating these
enhancements into VCL and UCB via distinct setups. The future work should
take the initialization of mixtures into account (e.g. Iterated Laplace Approx-
imations). In addition, we plan to properly find the number of components of
the Gaussian mixture according to each task or even cast it into a trainable
parameter while ensuring computation time and memory.
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A Appendix

In this section, we present the proof of KL upper bound in theorem 1:

Theorem 2. Consider 2 mixtures f(x) =
∑K
i=1 π

a
iN (µai , σ

a
i ) and

g(x) =
∑K
i=1 π

b
iN (µbi , σ

b
i )(π

a
i , π

b
i ∈ ∆K−1), we have the below inequality:

KL(f |g) ≤ KL(πa|πb) +

K∑
i=1

παi KL(N (µai , σ
a
i )|N (µbi , σ

b
i )) (5)

Lemma 1: Jensen inequality
Suppose a1, a2, . . . , aK are non negative numbers whose sum equal to 1 and

x1, x2, . . . , xK are K arbitrary real numbers . Given a real-value convex function
f(x) : R→ R. Jensen inequality shows that:

f(

K∑
i=1

aixi) ≤
K∑
i=1

aif(xi)

The equality holds if and only if xi = xj ∀i 6= j

Lemma 2: Log sum inequality
Let a1, a2, . . . , aK and b1, b2, . . . , bK be non-negative numbers. We have:

K∑
i=1

ai log
ai
bi
≥ (

K∑
i=1

ai) log

∑
ai∑
bi

Proof : Consider f(x) = x log(x) (x ∈ R+). We have:

⇒ f ′(x) = log(x) + 1

⇒ f”(x) =
1

x
> 0 or f(x) is a strictly convex function.

Using Jensen inequality:

K∑
i=1

αif(ti) ≥ f(

K∑
i=1

αiti)

keeps for any α ≥ 0 has the property
∑
i αi = 1.

Choose αi = bi∑
bj

and ti = ai
bi

:

K∑
i=1

bi∑
bj

ai
bi

log

(
ai
bi

)
≥

(
K∑
i=1

bi∑
bj

ai
bi

)
log

(
K∑
i=1

bi∑
bj

ai
bi

)

⇔

∑
ai log

(
ai
bi

)
∑
bj

≥
(
∑
ai) log

(∑
ai∑
bi

)
∑
bj
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⇔
K∑
i=1

ai log

(
ai
bi

)
≥

(
K∑
i=1

ai

)
log

(∑
i ai∑
bi

)
(q.e.d)

Proof for Theorem 1

KL(f ||g) = KL(

K∑
i=1

πai fi||
K∑
i=1

πbi gi)

=

∫
x

K∑
i=1

πai fi(x) log

(∑
πai fi(x)∑
πbi gi(x)

)
dx

≤
∫
x

K∑
i=1

πai fi(x) log

(
πai fi(x)

πbi gi(x)

)
dx

=

∫
x

K∑
i=1

πai fi(x)log

(
πai
πbi

)
dx−

∫
x

∑
i

πai fi(x) log

(
fi(x)

gi(x)

)
dx

=

K∑
i=1

πai log

(
πai
πbi

)
−

K∑
i=1

πai

∫
x

fi(x) log

(
fi(x)

gi(x)

)
dx

= KL(πa||πb) +

K∑
i=1

πai KL(fi||gi)

= KL(πa|πb) +

K∑
i=1

παi KL(N (µai , σ
a
i )|N (µbi , σ

b
i ))

Hence, this gives us the desired inequality in Equation2.


